Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Industrial & engineering chemistry research ; 62(10):4191-4209, 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2258287

RESUMEN

The control of infectious diseases can be improved via carefully designed decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated the development of new ozone-based technologies for the decontamination of personal protective equipment, surfaces, materials, and indoor environments. As this interest continues to grow, it is necessary to consider key factors affecting the applicability of lab-based findings to large-scale systems utilizing ozone. In this review, we present recent developments on the critical factors affecting the successful deployments of industrial ozone technologies. Some of these include the medium of application (air or water), material compatibility, efficient circulation and extraction, measurement and control, automation, scalability, and process economics. We also provide a comparative assessment of ozone relative to other decontamination methods/sterilization technologies and further substantiate the necessity for increased developments in gaseous and aqueous ozonation. Modeling methodologies, which can be applied for the design and implementation of ozone contacting systems, are also presented in this review. Key knowledge gaps and open research problems/opportunities are extensively covered including our recommendations for the development of novel solutions with industrial importance.

2.
Sustainability ; 15(3):2216, 2023.
Artículo en Inglés | MDPI | ID: covidwho-2216840

RESUMEN

There is an ever-growing need in several industries to disinfect or sanitise products (i.e., to reduce or eliminate pathogenic microorganisms from their surfaces). Gaseous ozone has been widely applied for this purpose, particularly during the era of the COVID-19 pandemic. However, the large-scale deployment of this technology usually involves a manually-operated chamber, into which articles are loaded and subsequently unloaded after treatment - a batch process. Although the development of large-scale, automated and continuous ozonation equipment has hardly been reported in the literature, this has tremendous potential for industries seeking to decontaminate certain articles/products in a rapid and effective manner. In this paper, an overview of the design and implementation considerations for such an undertaking is evaluated. By presenting a case study for a developed automated system for clothing and personal protective equipment (PPE) disinfection, we provide key data regarding the automation procedure/design's considerations, risks, material compatibility, safety, sustainability and process economics. Our analysis shows that the transfer time for garments between successive chambers and the agility of the sliding doors are crucial to achieving the desired throughput. The automated system is capable of effectively treating (20 ppm ozone for 4 mins) 20,000 garments within an 8-hour shift, based on a transfer time of 2 mins and a sliding door speed of 0.4 m/s. The flexibility of the system allows for variation in the concentration or exposure time, depending on the contamination level and the consequent decontamination efficiency desired. This flexibility significantly limits the degradation of the material during treatment. A return on investment of 47% is estimated for this novel system.

3.
ACS Omega ; 7(47): 43006-43021, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2122930

RESUMEN

With the advent of the COVID-19 pandemic, there has been a global incentive for applying environmentally sustainable and rapid sterilization methods, such as ultraviolet-C radiation (UVC) and ozonation. Material sterilization is a requirement for a variety of industries, including food, water treatment, clothing, healthcare, medical equipment, and pharmaceuticals. It becomes inevitable when devices and items like protective equipment are to be reused on/by different persons. This study presents novel findings on the performance of these sterilization methods using four microorganisms (Escherichia coli , Staphylococcus aureus , Candida albicans , and Aspergillus fumigatus) and six material substrates (stainless steel, polymethyl methacrylate, copper, surgical facemask, denim, and a cotton-polyester fabric). The combination of both ozone and UVC generally yields improved performance compared to their respective applications for the range of materials and microorganisms considered. Furthermore, the effectiveness of both UVC and ozone was higher when the fungi utilized were smeared onto the nonabsorbent materials than when 10 µL droplets were placed on the material surfaces. This dependence on the contaminating liquid surface area was not exhibited by the bacteria. This study highlights the necessity of adequate UVC and ozone dosage control as well as their synergistic and multifunctional attributes when sterilizing different materials contaminated with a wide range of microorganisms.

4.
Chem Eng J ; 454: 140188, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2095138

RESUMEN

Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed. The key objective of this review is to summarize recent advances in the utilisation of ozone for decontamination applications in the above-listed industries while emphasising the impact of key parameters affecting microbial reduction efficiency and ozone stability for prolonged action. We realise that aqueous ozonation has received higher research attention, compared to the gaseous application of ozone. This can be attributed to the fact that water treatment represents one of its earliest applications. Furthermore, the application of gaseous ozone for personal protective equipment (PPE) and medical device disinfection has not received a significant number of contributions compared to other applications. This presents a challenge for which the correct application of ozonation can mitigate. In this review, a critical discussion of these challenges is presented, as well as key knowledge gaps and open research problems/opportunities.

5.
Mar Drugs ; 20(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1725847

RESUMEN

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Alcaloides Indólicos/química , Piperazinas/química , SARS-CoV-2/enzimología , Alcaloides/química , Alcaloides/aislamiento & purificación , Antivirales/aislamiento & purificación , Aspergillus fumigatus/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Alcaloides Indólicos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Piperazinas/aislamiento & purificación
6.
Biomolecules ; 11(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1408460

RESUMEN

SARS-CoV-2 virus mutations might increase its virulence, and thus the severity and duration of the ongoing pandemic. Global drug discovery campaigns have successfully developed several vaccines to reduce the number of infections by the virus. However, finding a small molecule pharmaceutical that is effective in inhibiting SARS-CoV-2 remains a challenge. Natural products are the origin of many currently used pharmaceuticals and, for this reason, a library of in-house fungal extracts were screened to assess their potential to inhibit the main viral protease Mpro in vitro. The extract of Penicillium citrinum, TDPEF34, showed potential inhibition and was further analysed to identify potential Mpro inhibitors. Following bio-guided isolation, a series of benzodiazepine alkaloids cyclopenins with good-to-moderate activity against SARS-CoV-2 Mpro were identified. The mode of enzyme inhibition of these compounds was predicted by docking and molecular dynamic simulation. Compounds 1 (isolated as two conformers of S- and R-isomers), 2, and 4 were found to have promising in vitro inhibitory activity towards Mpro, with an IC50 values range of 0.36-0.89 µM comparable to the positive control GC376. The in silico investigation revealed compounds to achieve stable binding with the enzyme active site through multiple H-bonding and hydrophobic interactions. Additionally, the isolated compounds showed very good drug-likeness and ADMET properties. Our findings could be utilized in further in vitro and in vivo investigations to produce anti-SARS-CoV-2 drug candidates. These findings also provide critical structural information that could be used in the future for designing potent Mpro inhibitors.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Penicillium/química , SARS-CoV-2/enzimología , Benzodiazepinonas/química , Benzodiazepinonas/aislamiento & purificación , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación
7.
Mar Drugs ; 19(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1325729

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2's spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein's RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.


Asunto(s)
Antivirales/farmacología , Organismos Acuáticos/química , Polisacáridos/farmacología , SARS-CoV-2/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Sitios de Unión , Simulación por Computador , Heparina/química , Heparina/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Polisacáridos/química , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad , Sulfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA